

Basic Terms

Unit 1: Lesson 11

Transformations in the Coordinate Plane

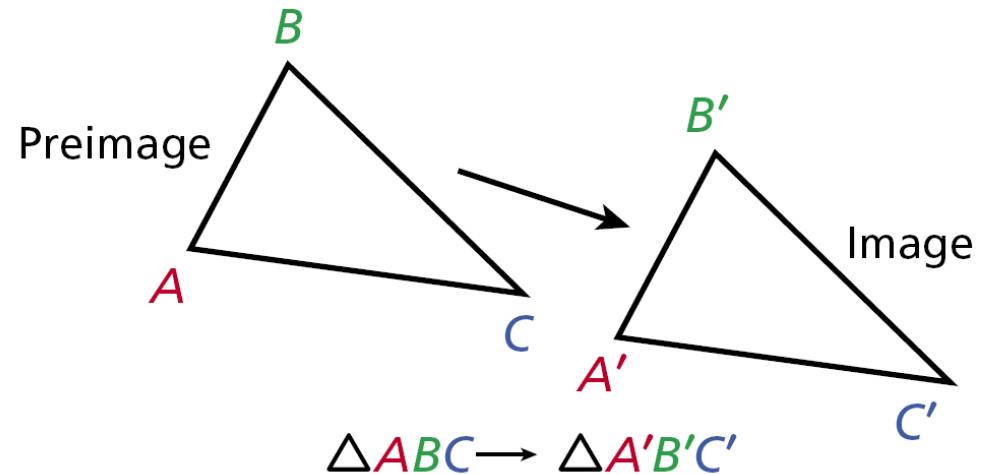
Holt Geometry Texas ©2007

Objectives and Student Expectations

- ▶ TEKS: G2B, G10A
- ▶ The student will make conjectures about angles, lines and polygons using a variety of approaches including transformations.
- ▶ The student will use congruence transformations to make conjectures and justify properties of figures.

Basic Terms

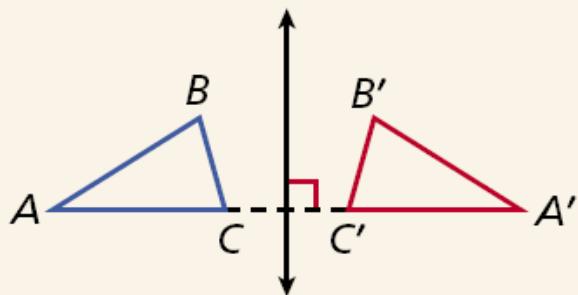
A **transformation** is a change in the position, size, or shape of a figure. The original figure is called the **preimage**. The resulting figure is called the **image**. A transformation *maps* the preimage to the image. Arrow notation (\rightarrow) is used to describe a transformation, and primes ('') are used to label the image.



Basic Terms

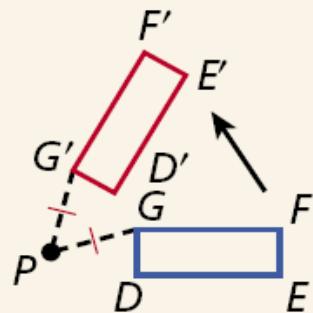
Transformations

REFLECTION



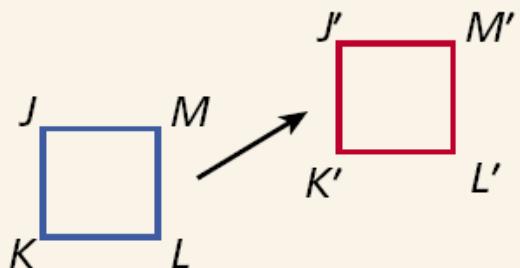
A **reflection** (or *flip*) is a transformation across a line, called the line of reflection. Each point and its image are the same distance from the line of reflection.

ROTATION



A **rotation** (or *turn*) is a transformation about a point P , called the center of rotation. Each point and its image are the same distance from P .

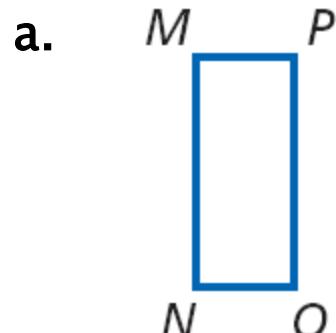
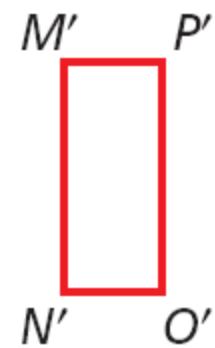
TRANSLATION



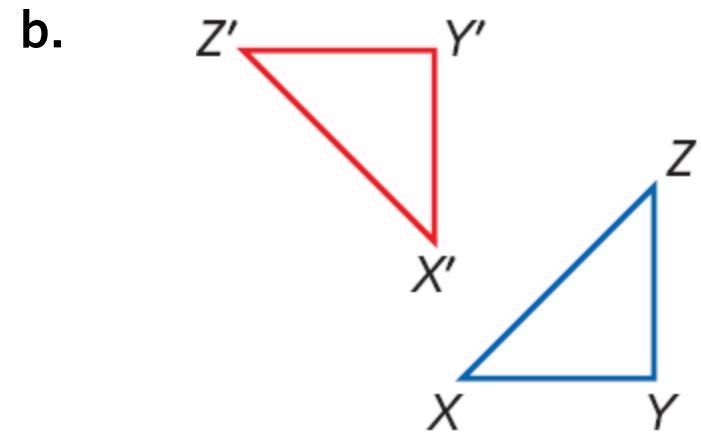
A **translation** (or *slide*) is a transformation in which all the points of a figure move the same distance in the same direction.

Example: 1

Identify each transformation. Then use arrow notation to describe the transformation.



translation; $MNOP \rightarrow M'N'O'P'$

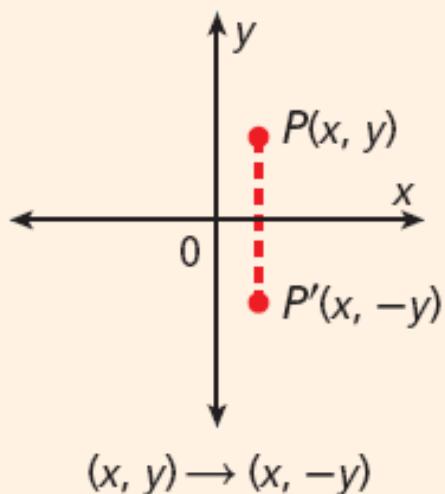


rotation; $\Delta XYZ \rightarrow \Delta X'Y'Z'$

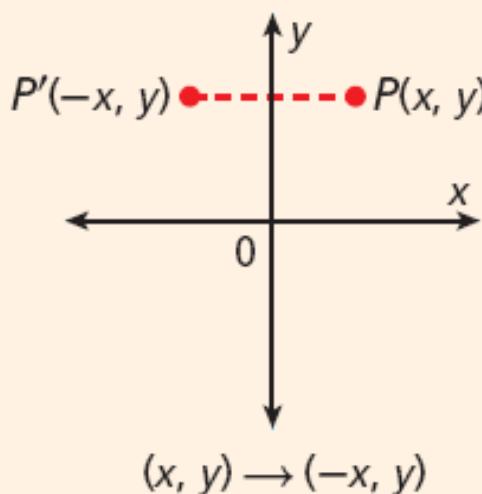
Reflection Rules

Reflections in the Coordinate Plane

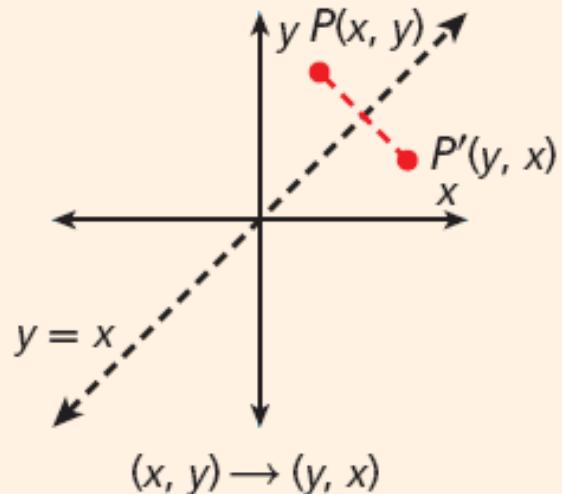
ACROSS THE x -AXIS



ACROSS THE y -AXIS

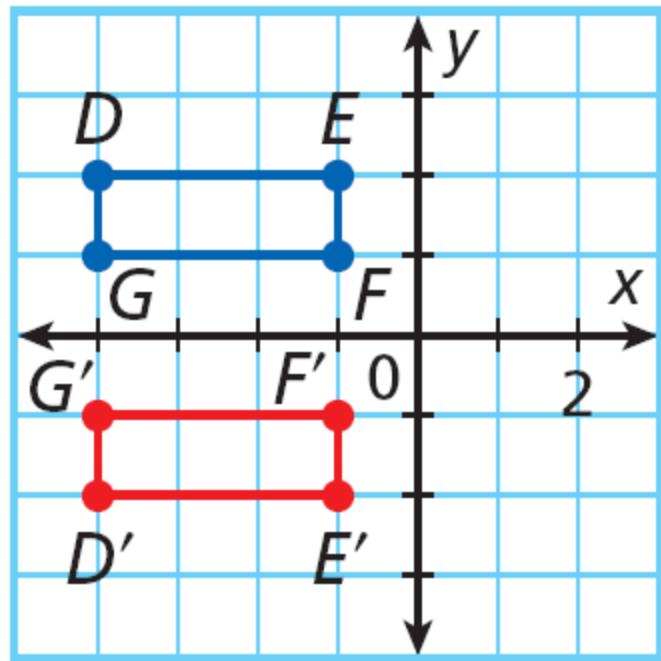


ACROSS THE LINE $y = x$



Example: 2

Identify the transformation.

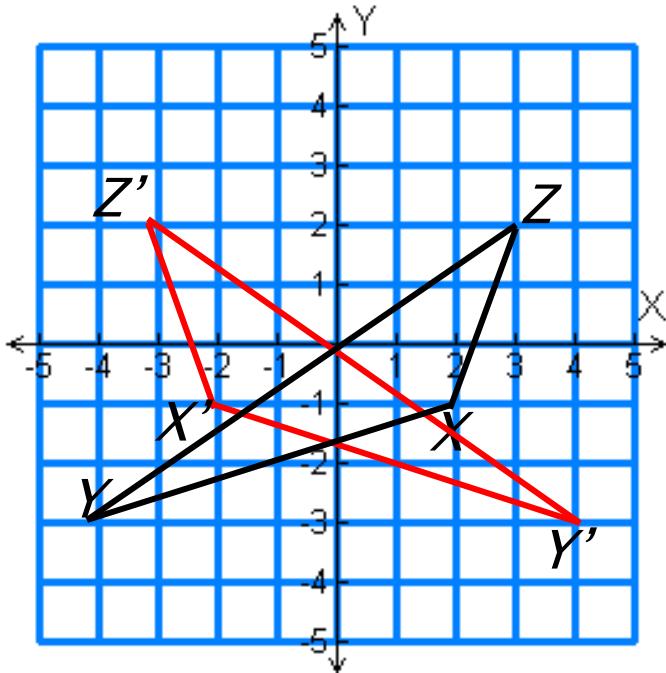


Reflection across the x axis,
 $DEFG \rightarrow D'E'F'G'$

Example: 3

Reflect the figure with the given vertices across the given line.

$X(2, -1)$, $Y(-4, -3)$, $Z(3, 2)$; y -axis



The reflection of (x, y) is $(-x, y)$.

$$X(2, -1) \rightarrow X'(-2, -1)$$

$$Y(-4, -3) \rightarrow Y'(4, -3)$$

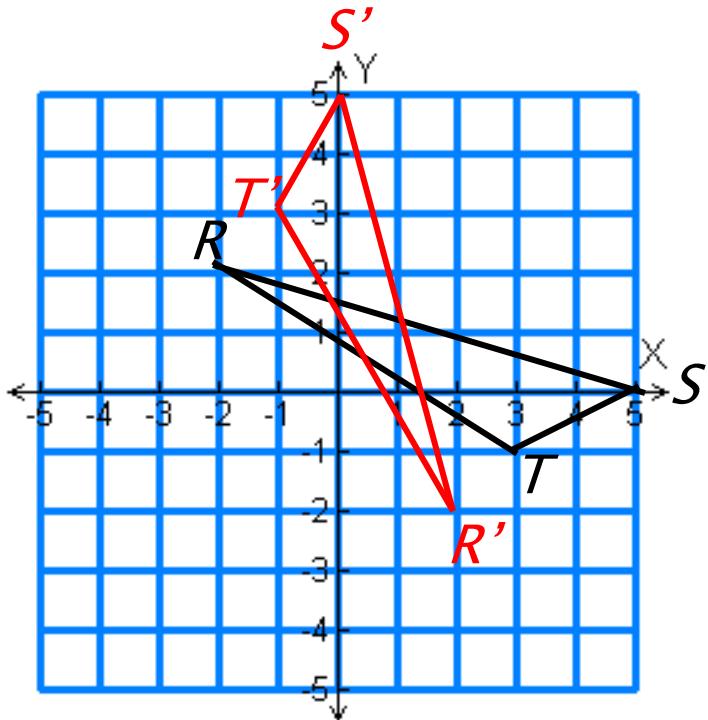
$$Z(3, 2) \rightarrow Z'(-3, 2)$$

Graph the image and preimage.

Example: 4

Reflect the figure with the given vertices across the given line.

$$R(-2, 2), S(5, 0), T(3, -1); y = x$$



The reflection of (x, y) is (y, x) .

$$R(-2, 2) \rightarrow R'(2, -2)$$

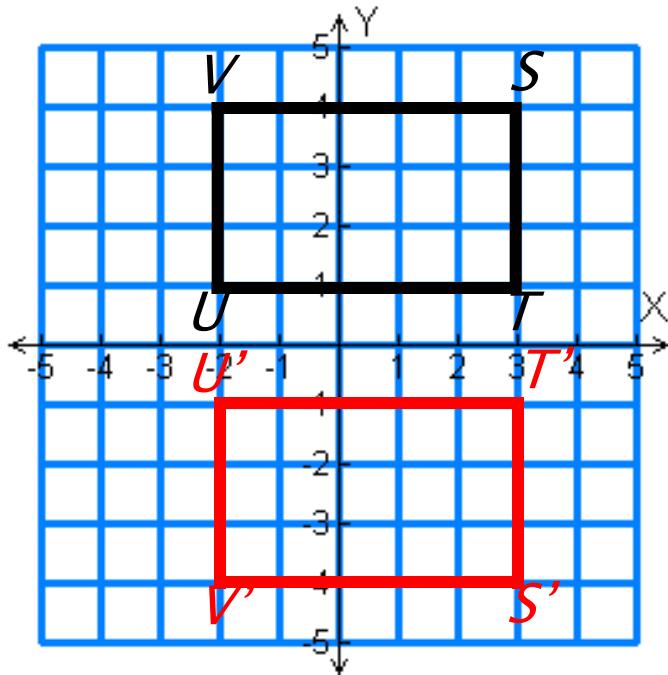
$$S(5, 0) \rightarrow S'(0, 5)$$

$$T(3, -1) \rightarrow T'(-1, 3)$$

Graph the image and preimage.

Example: 5

Reflect the rectangle with vertices $S(3, 4)$, $T(3, 1)$, $U(-2, 1)$ and $V(-2, 4)$ across the x -axis.



The reflection of (x, y) is $(x, -y)$.

$$S(3, 4) \rightarrow S'(3, -4)$$

$$T(3, 1) \rightarrow T'(3, -1)$$

$$U(-2, 1) \rightarrow U'(-2, -1)$$

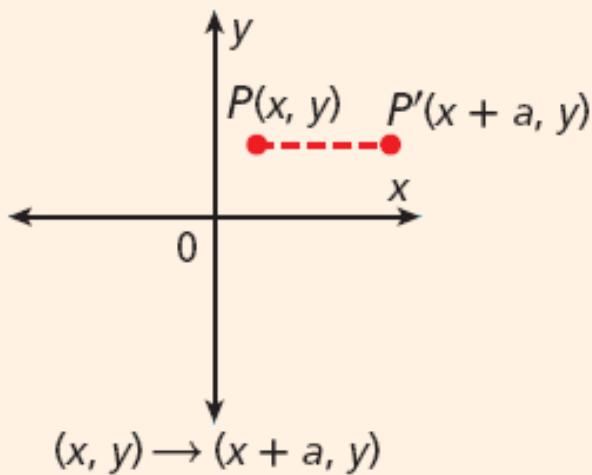
$$V(-2, 4) \rightarrow V'(-2, -4)$$

Graph the image and preimage.

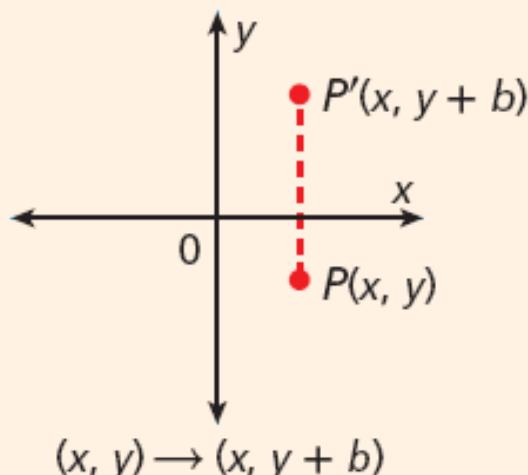
Translation Rules

Translations in the Coordinate Plane

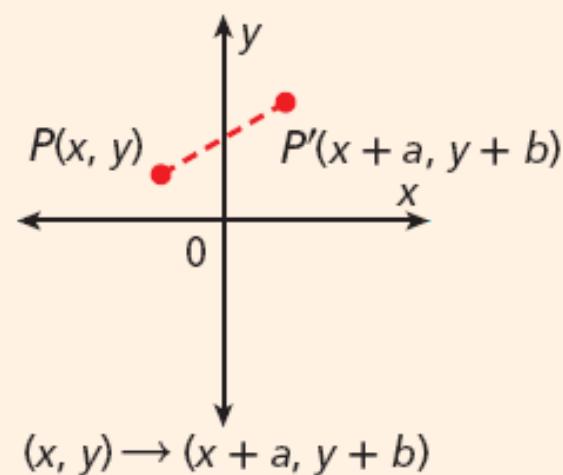
HORIZONTAL TRANSLATION ALONG VECTOR $\langle a, 0 \rangle$



VERTICAL TRANSLATION ALONG VECTOR $\langle 0, b \rangle$



GENERAL TRANSLATION ALONG VECTOR $\langle a, b \rangle$



To find coordinates for the image of a figure in a translation, add a to the x -coordinates of the preimage and add b to the y -coordinates of the preimage.

Translations can also be described by a rule such as $(x, y) \rightarrow (x + a, y + b)$.

Example: 6

Find the coordinates for the image of ΔABC after the translation $(x, y) \rightarrow (x + 2, y - 1)$. Draw the pre image and image.

Step 1 Find the coordinates of ΔABC .

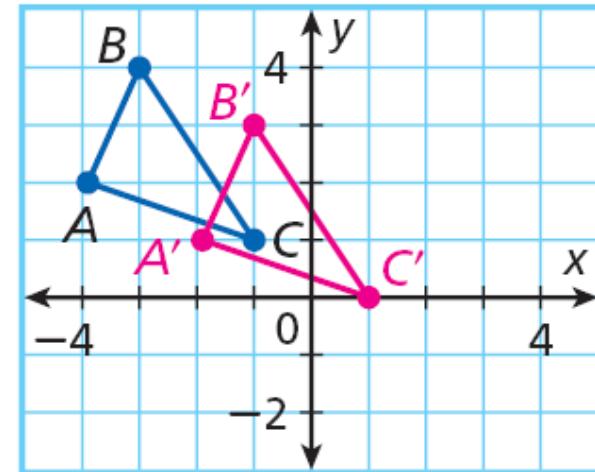
The vertices of ΔABC are $A(-4, 2)$, $B(-3, 4)$, $C(-1, 1)$.

Step 2 Apply the rule to find the vertices of the image.

$$A'(-4 + 2, 2 - 1) = A'(-2, 1)$$

$$B'(-3 + 2, 4 - 1) = B'(-1, 3)$$

$$C'(-1 + 2, 1 - 1) = C'(1, 0)$$



Step 3 Plot the points. Then finish drawing the image by using a straightedge to connect the vertices.

Example: 7

Find the coordinates for the image of $JKLM$ after the translation $(x, y) \rightarrow (x - 2, y + 4)$. Draw the image.

Step 1 Find the coordinates of $JKLM$.

The vertices of $JKLM$ are $J(1, 1)$, $K(3, 1)$, $L(3, -4)$, $M(1, -4)$.

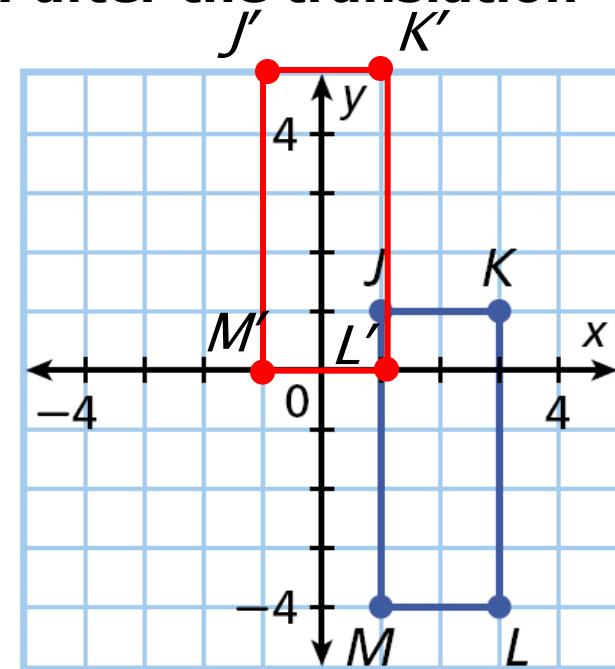
Step 2 Apply the rule to find the vertices of the image.

$$J'(1 - 2, 1 + 4) = J'(-1, 5)$$

$$K'(3 - 2, 1 + 4) = K'(1, 5)$$

$$L'(3 - 2, -4 + 4) = L'(1, 0)$$

$$M'(1 - 2, -4 + 4) = M'(-1, 0)$$



Step 3 Plot the points. Then finish drawing the image by using a straightedge to connect the vertices.

Example: 8

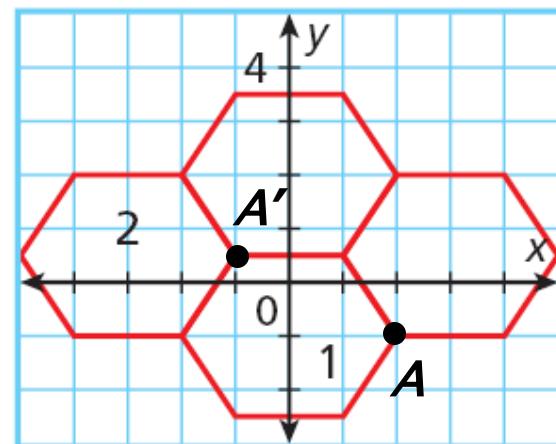
The figure shows part of a tile floor. Write a rule for the translation of hexagon 1 to hexagon 2.

Step 1 Choose two points.

Choose a Point A on the preimage and a corresponding Point A' on the image. A has coordinate $(2, -1)$ and A' has coordinates $(-1, \frac{1}{2})$.

Step 2 Translate.

To translate A to A' , 2 units are subtracted from the x -coordinate and $1\frac{1}{2}$ units are added to the y -coordinate. Therefore, the translation rule is $(x, y) \rightarrow (x - 3, y + 1\frac{1}{2})$.



Example: 9

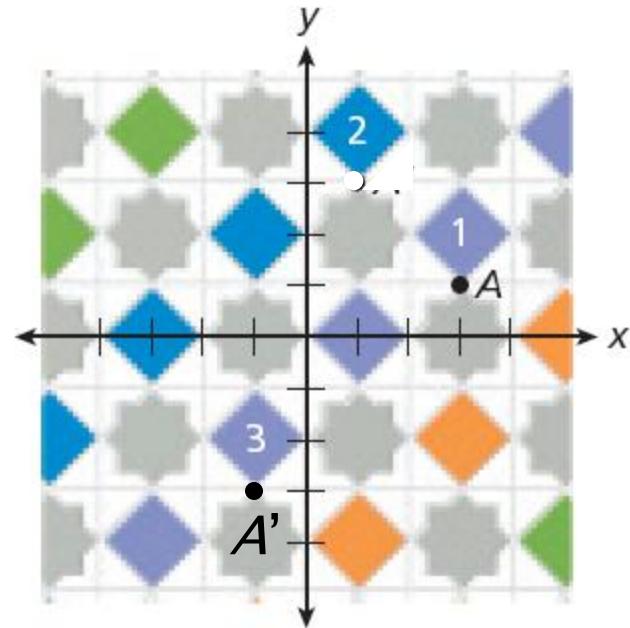
Use the diagram to write a rule for the translation of square 1 to square 3.

Step 1 Choose two points.

Choose a Point A on the preimage and a corresponding Point A' on the image. A has coordinate $(3, 1)$ and A' has coordinates $(-1, -3)$.

Step 2 Translate.

To translate A to A' , 4 units are subtracted from the x -coordinate and 4 units are subtracted from the y -coordinate. Therefore, the translation rule is $(x, y) \rightarrow (x - 4, y - 4)$.

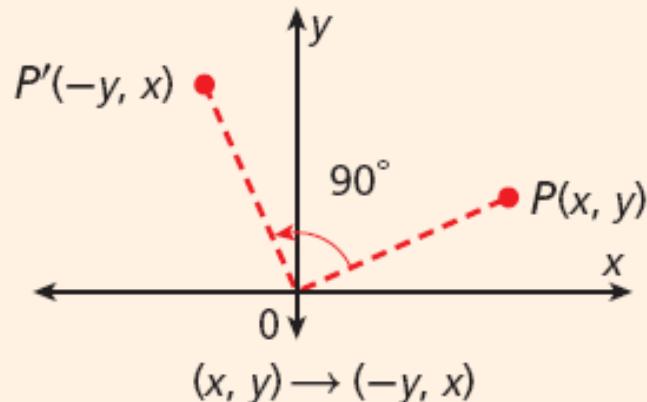


Rotation Rules

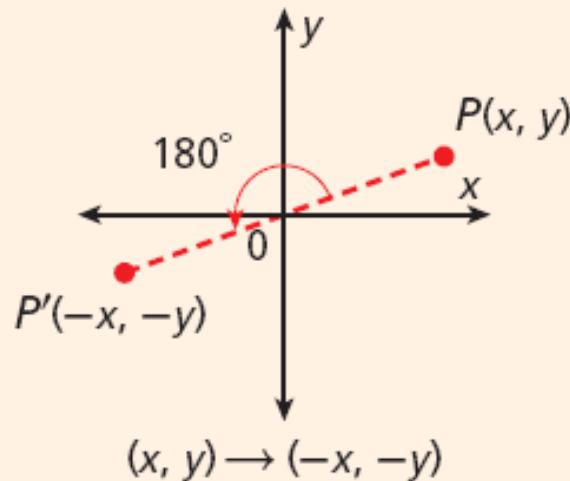
Rotations in the Coordinate Plane

BY 90° ABOUT THE ORIGIN

Counterclockwise

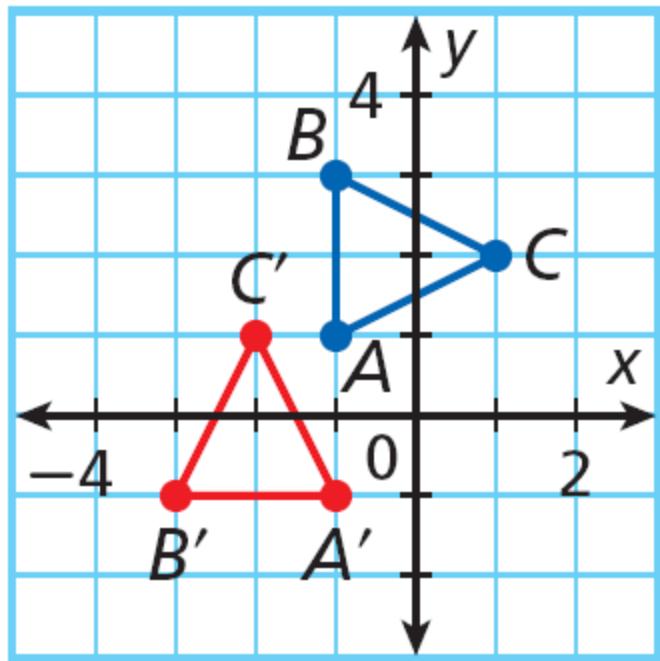


BY 180° ABOUT THE ORIGIN



Example: 10

Describe the transformation.



90° rotation counterclockwise,
 $\Delta ABC \rightarrow \Delta A'B'C'$

Example: 11

Rotate $\triangle ABC$ by 90° about the origin.

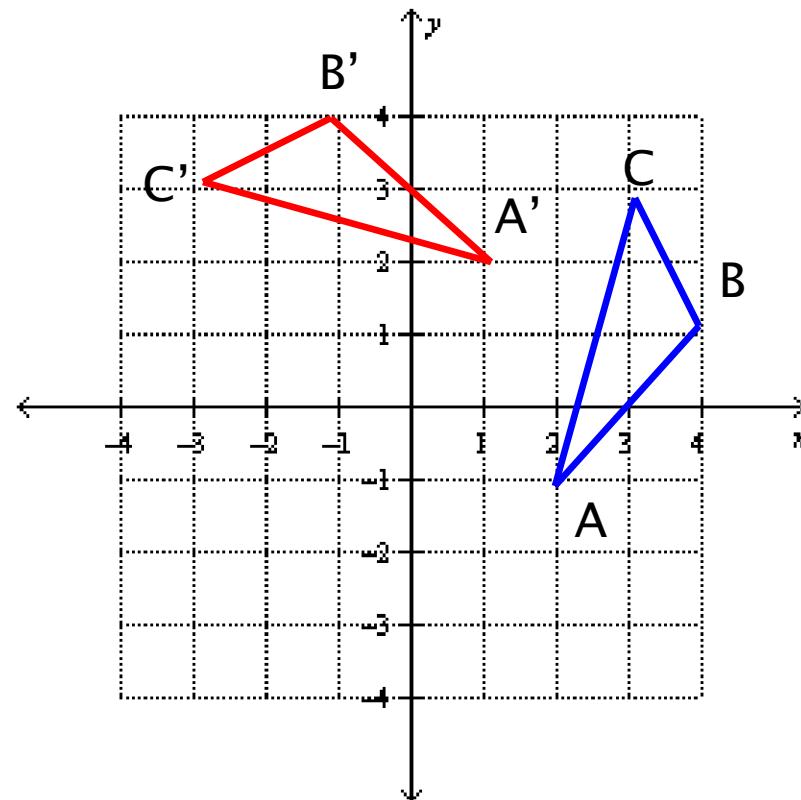
The rotation of (x, y) is $(-y, x)$.

$$A(2, -1) \rightarrow A'(1, 2)$$

$$B(4, 1) \rightarrow B'(-1, 4)$$

$$C(3, 3) \rightarrow C'(-3, 3)$$

Graph the preimage and image.



Example: 12

Rotate ΔJKL with vertices $J(2, 2)$, $K(4, -5)$, and $L(-1, 6)$ by 180° about the origin.

The rotation of (x, y) is $(-x, -y)$.

$$J(3, 5) \rightarrow J'(-3, -5)$$

$$K(4, -5) \rightarrow K'(-4, 5)$$

$$L(-1, 6) \rightarrow L'(1, -6)$$

Graph the preimage and image.

